Evaluation of experiments on short steel columns exposed to standard fire and axial load

Students (3rd year) Fire protection program: Oskar Lind Christoffer Vikström (Fredrik Larsson) (Emma Martinsson)

The northernmost University of Technology in Scandinavia World-class research and education

Content

- Experimental set-up
- Nominal geometry vs. measured data
- Coupon test of the steel column
- Results of experiments
- Prediction of the experimental results by EN1993-1-2
- Conclusions

Objectives

- Experimental values for critical temperature of short column in compression
- Comparison of protected and unprotect column
- Interpretation of experimental data
- Comparison with nominal and experimental data
- Prediction of experiments by EN1993-1-2

Test set-up

- Two colums
- One protected, one unprotected
- Applied constant load 150 kN
- L=800 mm
- "80x80" mm

The northernmost University of Technology in Scandinavia World-olass research and education

Results of the coupon tests

Gas temperature in furnace

Calculated critical temperature for unprotected column Arcelor

Table 4.2 : Critical compression stress $f'_{y,\theta,\overline{\lambda}}$ for S355 steel

	Temperature θ _a					
	400°C	500°C	600°C	700°C	800°C	900°C
λ(20°C)	$\mathbf{f}'_{y,\theta,\overline{\lambda}}$ [N/mm ²]					
0.0	355	277	167	82	39	21
0.1	334	261	157	76	37	20
0.2	313	246	147	71	35	19
0.3	293	231	137	66	33	18
0.4	272	215	126	60	31	17
0.5	250	199	116	54	28	16

L

The northernmost University of Technology in Scandinavia World-class research and education

Stroke / time

The northernmost University of Technology in Scandinavia World-class research and education

Critical temperature measurements for different thermocouples

UNIVERSITY OF TECHNOLOGY The northernmost University of Technology in Scandinavla World-class research and education

Critical time Protected vs. unprotected column

UNIVERSITY

OF TECHNOLOGY

The northernmost University of Technology in Scandinavia World-class research and education Load vs time result for the unprotected column

LULEÅ UNIVERSITY OF TECHNOLOGY

Conclusions

- Non-typical steel grade, looks like high strength steel rather than S355 which was the nominal steel grade
- Good prediction by Eurocode procedure
 - For steel with yield strength 515 MPa critical temperature measured is: 670 °C
 - For steel with S460, critical temperature calcualted is: 638 °C

